УДК 532.528

ПОРОГ ОБРАЗОВАНИЯ КАВИТАЦИОННЫХ ВИХРЕВЫХ КОЛЕЦ ПРИ ИСТЕЧЕНИИ ЖИДКОСТИ ИЗ ЗАТОПЛЕННОЙ ТРУБЫ

Медведев Р.Н., Дрожжин А.П., Тесленко В.С.

Институт гидродинамики им.М.А.Лаврентьева СО РАН, Новосибирск, Россия

Работа выполнена при финансовой поддержке РФФИ, гранты № 13-08-00838, № 14-08-00226

АННОТАЦИЯ

В работе представлены результаты численного расчета поля скоростей при истечении жидкости из затопленной круглой трубы. Показано, что на выходе из трубы, на кромке ствола, локальная скорость жидкости увеличивается в несколько раз по сравнению со скоростью жидкости на оси трубы. Локальная скорость увеличивается примерно по степенному закону с уменьшением радиуса кривизны выходного отверстия трубы, при этом существует пороговая величина, при которой начинается образование кавитационного вихревого кольца.

введение

Кавитация – нежелательное явление с точки зрения эффективности работы винтовых и водометных движителей. Проектирование винтов и сопел осуществляется с соблюдением обязательного требования: минимизация кавитации. Если для винтового движителя кавитация имеет место на лопатках винта, то для водометных – на выходе сопла [1].

Если поведение кавитационного вихревого кольца (КВК) после отрыва от края сопла достаточно хорошо изучено [1-4], то критерии его возникновения в зависимости от геометрии сопла до сих пор не найдены.

В работе [3] представлены результаты экспериментальных исследований по генерации КВК в воде с помощью затопленного цилиндрического ствола с диаметрами 20 – 40 мм и длиной 30 – 100 мм. Исследована динамика образования и распространения КВК в воде в зависимости от скорости метания воды. Установлено, что КВК в виде полого тора образуются при скоростях воды более 2 м/с вдоль оси ствола. При скоростях воды более 6 м/с оптическими методами впервые зарегистрированы радиальные пульсации КВК.

В работе [4] вводится понятие кавитационного числа вихря $k = \frac{2P}{\rho v^2}$ (*P* – внешнее давление, *v* – Проведена экспериментальная проверка результатов расчета с помощью затопленного цилиндрического ствола с диаметром 30 мм, длиной 50 – 100 мм, метание воды производилось взрывом пропанкислородных смесей. Показано, что на кромке ствола формируется кавитационное вихревое кольцо (КВК) при локальных скоростях более 14 м/с, при этом увеличение радиуса кривизны выходного сечения позволяет полностью исключить образование КВК.

скорость вихря, ρ – плотность жидкости), которое определяет наличие или отсутствие кавитационной полости в вихре. В [4] пороговое значение k равнялось 3, что при P = 1 atm соответствует скорости $v \approx$ 8 м/с. При этом не рассматривается скорость слоя жидкости, прилегающей к кавитационной полости, которая превышает поступательную скорость вихря.

Для возникновения кавитации необходимо создать локальное разрежение в жидкости. В специально очищенных жидкостях разрыв сплошности может происходить при абсолютных давлениях существенно меньших нулевого, при этом требуются большие растягивающие усилия. Для обычной водопроводной или речной воды, в которой заведомо присутствует большое количество микропузырьков, для разрыва сплошности достаточно давлений, близких к нулю [5]. При комнатной температуре кипение воды начинается при падении давления до 0,02 – 0,04 атм.

По закону Бернулли, для того, чтобы абсолютное давление в потоке было нулевым, скорость потока

должна быть
$$\upsilon_0 = \sqrt{\frac{2P}{\rho}}$$
, при $P = 1$ atm $\upsilon_0 \approx 14,1$ м/с.

При скоростях равных или больших v_0 в обычной неочищенной воде образуются каверны, заполненные паром.

ЧИСЛЕННЫЙ РАСЧЕТ

Для нахождения поля скоростей при истечении жидкости из затопленной трубы с соплами различной кривизны численно решалось уравнение Эйлера в цилиндрических координатах на треугольной неравномерной сетке. Геометрическая постановка задачи изображена на рис.1. Пределы интегрирования составляли $r = 0 \div 100$, $z = 0 \div 100$. Все геометрические величины обезразмеривались относительно радиуса трубы *R*. Скорость обезразмеривалась относительно скорости столба жидкости внутри трубы *v*. Выходное сопло моделировалось скруглением стенки трубы, кривизна сопла определялась толщиной δ, которая варьировалась в пределах $\delta = 0.01R \div 2R$. Таким образом, выход из трубы расширяется по дуге окружности радиуса $\delta/2$.

Рис.1 Геометрическая постановка залачи расчета поля скоростей при истечении жидкости из цилиндрического ствола.

Расчеты проводились для двух значений длины трубы: h = 5R и h = 10R. Жидкость предполагалась идеальной несжимаемой, трение о стенку трубы не учитывалось.

На рис.2 показано распределение скоростей на выходе из трубы для значений параметров $\delta/R = 0.1$. h/R = 5. Видно, что максимальная скорость жидкости наблюдается на внутренней части закругленной кромки трубы и примерно в 2,2 раза превышает скорость потока в трубе.

Максимальные скорости при h/R = 5 и h/R = 10совпали с точностью 3 – 4 %, поэтому можно сделать вывод, что при достаточно большой длине трубы она не влияет на критерии образования КВК.

На рис.3 показана зависимость максимальной скорости от величины δ/R , полученная в результате численного расчета. Непрерывной линией показана аппроксимация формулой:

$$v_{\text{max}} / v = 1 + 0.24 (\delta / R)^{-0.7}$$
. (1)

Рис.3 Зависимость относительной максимальной скорости v_{max}/v от величины *δ/R*. Сплошная линия – аппроксимация формулой (1).

Формула (1) определяет порог возникновения кавитации в зависимости от кривизны выходного отверстия трубы δ . Видно, что при уменьшении δ максимальная скорость увеличивается по обратному степенному закону. При стремлении δ к бесконечности относительная максимальная скорость стремится к единице, т.е. максимальная скорость стремится к скорости потока в трубе.

Предполагая, что образование КВК начинается при достижении нулевого абсолютного давления на кромке трубы ($\frac{2P}{\rho v_{\text{max}}^2} = 1$), мы можем записать ка-

витационное число k, как:

$$k = \frac{\nu_{\text{max}}^2}{\nu^2} = \left[1 + 0,24 \left(\frac{\delta}{R}\right)^{-0.7}\right]^2, \quad (2)$$

где v – скорость жидкости в трубе.

При этом скорость потока в трубе, при которой начинается кавитации на кромке:

$$\upsilon_0 = \sqrt{\frac{2P}{\rho}} \left[1 + 0.24 \left(\frac{\delta}{R} \right)^{-0.7} \right]^{-1}.$$
 (3)

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА

Результаты расчета были проверены экспериментально. Для этого использовалась цилиндрическая труба из полипропилена с внутренним радиусом 14,5 мм, внешним радиусом – 15,5 мм, толщина стенки составляла 1 мм. Нижняя кромка трубы имела форму, близкую к полуокружности. Высота трубы составляла 50 – 100 мм. Труба помещалась под воду в вертикальном положении, верхний торец закрывался, а нижний был открыт в воду. Внутрь трубы на верхний торец нагнеталась пропан-кислородная смесь, которая инициировалась высоковольтной искрой, после чего столб воды выталкивался вниз (рис.4а). Для увеличения радиуса кривизны выходного отверстия использовалась насадка из пластика (рис.4б).

Рис.4 Схема постановки эксперимента в разрезе. а – без насадки, б – с насадкой.

Для схемы рис.4а значение $\delta/R = 0,07$, для схемы рис.4б $\delta/R = 2$.

Эксперименты проводились при атмосферном давлении, при комнатной температуре. Динамика гидродинамических процессов изучалась с помощью теневой скоростной киносъемки камерой «MotionX-tra HG-LE» при частоте съёмки до 10000 кадров/с. Скорость потока воды в трубе соответствовала скорости расширения продуктов сгорания, которая в свою очередь определялась по скорости границы газовой полости.

Рис.5 Кинограмма гидродинамических процессов при выталкивании столба воды из трубы расширяющимися продуктами сгорания, постановка рис.4а.

На рис.5 показана кинограмма расширения продуктов сжигания 3 ml пропан-кислородной смеси в постановке рис.4а. Высота трубы составляла 80 мм. Частота съемки – 10000 кадров/с.

На втором кадре видно, что с кромки трубы отрывается КВК, который распространяется вдоль оси трубы в направлении струи. Момент образования КВК соответствует скорости столба жидкости в трубе $v \approx 6$ м/с. По формуле (1) скорость на кромке трубы в этот момент составляет $v_{\rm max} \approx 15$ м/с ($\delta/R = 0,07$).

На рис.6 изображена кинограмма гидродинамических процессов при расширении продуктов сжигания 3 ml пропан-кислородной смеси в постановке рис.46. Высота трубы – 80 мм, частота съемки – 5000 кадров/с. Измеренная максимальная скорость столба жидкости в трубе составила ≈ 12 м/с, при этом можно видеть, что КВК отсутствует, т.е. кавитации на кромке выходного отверстия не происходит. По формуле (1) максимальная скорость воды на внутренней стенке насадка составляет 13,7 м/с (при $\delta/R = 2$), что немного ниже пороговой для начала кавитации (14,1 м/с).

Рис.6 Кинограмма гидродинамических процессов при выталкивании столба воды из трубы расширяющимися продуктами сгорания, постановка рис.46.

Рис.7 Пороговые значения скорости жидкости в трубе и на кромке трубы, при которой начиналось образование КВК.

На рис.7 на оси абсцисс показаны значения скорости жидкости в трубе, найденные по результатам семи экспериментов в постановке рис.4а, при которой начиналось образование КВК на кромке трубы. По оси ординат отложены значения скорости на кромке трубы, где происходит развитие КВК, вычисленные по формуле (1).

выводы

В результате численного расчета показано, что локальная скорость жидкости на кромке трубы превышает скорость внутри трубы. Найдена приближенная зависимость коэффициента относительного увеличения скорости от радиуса кривизны выходного отверстия трубы, показано, что с уменьшением радиуса кривизны локальная скорость на кромке увеличивается.

Результаты экспериментальной проверки путем метания воды подводным взрывом пропан-

ЛИТЕРАТУРА

- 1. G.L. Chahine, Ph.F. Genoux. Collapse of a cavitating vortex ring // Journal of fluids engineering, 1983, Vol. 105, pp. 400-405.
- В.А. Владимиров, Л.Я. Рыбак. Некоторые вопросы движения полых вихревых колец в идеальной несжимаемой жидкости // Динамика сплошных сред, в. 26, Новосибирск, 1976, с.17-29.

V.A. Vladimirov, L.Ya. Rybak. Nekotorye voprosy dvizheniya polykh vikhrevykh kolets v idealnoy neszhimaemoy zhidkosti // Dinamika sploshnykh sred, v. 26, Novosibirsk, 1976, s.17-29.

 В.С. Тесленко, А.П. Дрожжин, Р.Н. Медведев. Пульсации кавитационных вихревых колец в воде // Письма в ЖТФ, 2014. Том 40. Вып. 22. С. 76-82. Основные погрешности в определение скорости вносит неровная линия границы газ-жидкость. Усредненная по семи экспериментам величина составила 15,2 м/с, что близко к 14 м/с. Усредненная скорость столба воды в трубе при этом составила 6 м/с, что близко к результатам вычисления по формуле (3). При данных условиях кавитационное число k получается равным $k \approx 6.5$.

кислородной смеси показали, что увеличение радиуса кривизны выходного отверстия трубы приводит к устранению кавитации на выходе из трубы. Локальная скорость на кромке, при которой начинает формироваться КВК, приблизительно равняется 15 м/с, что согласуется с результатами расчета.

Результаты данных исследований могут найти применение при расчетах выходных сопел водометных и гидрореактивных движителей, гидроакустических устройств, устройств для обработки поверхностей.

V.S. Teslenko, A.P. Drozhzhin, R.N. Medvedev. Pulsatsii kavitatsionnykh vikhrevykh kolets v vode // Pisma v ZhTF, 2014. Tom 40. Vyp. 22. S. 76-82.

 Г.В. Беляков. А.Н. Филиппов. Формирование кавитационного вихря при внедрении затопленной струи в жидкость // ЖЭТФ, 2006. Т. 129, Вып. 5. С. 981-988.

G.V. Belyakov. A.N. Filippov. Formirovanie kavitatsionnogo vikhrya pri vnedrenii zatoplennoy strui v zhidkost // ZhETF, 2006. T. 129, Vyp. 5. S. 981-988.

Фабрикант Н.Я. Аэродинамика. М.: Наука, 1964.
- 815 с.

Fabrikant N.Ya. Aerodinamika. M.: Nauka, 1964. - 815 s.